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Abstract

The free in-plane vibration of an axially moving membrane is studied considering the effects of both the
translating speed and aspect ratio of the membrane. Two sets of boundary conditions, which are free and
fixed constraints in the lateral direction at boundaries with mass transport, are discussed in this study.
From the extended Hamilton principle, the coupled equations of the longitudinal and lateral motions are
derived. These equations are then discretized by using the Galerkin method. From the discretized
equations, the natural frequencies and mode shapes are obtained for the variations of the translating speed
and aspect ratio. The results show that the translating speed, aspect ratio, and boundary conditions have
significant effects on the in-plane vibrations of the moving membrane.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Axially moving material problems have been interesting research subjects for a long time
because these problems can be found in many applications such as paper-web handling, magnetic
tape recording, belt drives, band-saw blades and so on. These systems are usually modelled as
moving membranes or plates to analyze their vibration characteristics. In general, the out-of-
plane vibration of such systems has been mainly investigated because their lowest natural
frequencies tend to be much lower than the natural frequencies of the in-plane vibration [1].
Although the in-plane vibration has less attention than the out-of-plane vibration, the in-plane

vibration may be very important in some cases [1,2]. For example, in a magnetic tape recording
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called a helical scan, a tape is spirally wrapped around a spinning drum, and the heads of the
drum contact the tape surface. The mechanism causes the in-plane vibration that results in tension
fluctuation and image jitter. Axial motions of flexible materials within cylindrical guides or rollers
are also influenced by the in-plane vibration. Kobayashi et al. [3] studied the in-plane vibration of
point-supported rectangular plates, and examined the natural frequencies and mode shapes
affected by the location of the supports. Bercin [4] assessed the effects and importance of in-plane
vibrations by using the dynamic stiffness technique. Bardell et al. [1] presented the in-plane
vibrations of isotropic rectangular plates with three different boundary conditions and two aspect
ratios. Hyde et al. [2] recently examined the natural frequencies and mode shapes of the in-plane
vibration. They carried out parametric studies over a wide range of aspect ratios for three sets of
boundary conditions. Liew et al. [5] also analyzed the three-dimensional vibrations of rectangular
plates using the Ritz energy approach.
All the previous studies on the in-plane vibration of membranes and plates were not for moving

ones but for stationary ones. Thus the translating speed of moving membranes or plates has not
been considered yet. However, the translating speed should be included in the dynamic analysis of
moving materials, because it is primarily related to the vibration and dynamic characteristics. On
the other hand, Chung et al. [6] recently investigated the longitudinal and transverse vibrations of
an axially moving string with translating speed. But the results of their study cannot be applicable
to axially moving membrane or plate systems with a small length-to-width ratio.
In the present paper, a model of an axially moving rectangular membrane is established for the

in-plane vibration analysis. For this purpose, equations of motion are derived by the extended
Hamilton principle [7]. Two kinds of boundary conditions are considered at the boundaries with
mass transport: fixed and free boundary conditions in the lateral direction. The weak form
associated with the equations of motion and boundary conditions is then discretized by the
Galerkin method. Finally, to investigate the dynamic characteristics of an axially moving
membrane, the natural frequencies and mode shapes are obtained for various aspect ratios and
translating speeds.

2. In-plane vibration model and equations of motion

The basic configuration of the in-plane vibration model for an axially moving membrane with
length L; width b and thickness h is illustrated in Fig. 1. The membrane is moving with a constant
translating speed V in the x direction and the tension per unit length is denoted by T : The xyz
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Fig. 1. Schematics of an axially moving membrane: (a) a transport system; and (b) a model of the membrane with the

longitudinal and lateral deflections.
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co-ordinate system is a space-fixed inertial frame. Note that the longitudinal displacement u and
the lateral displacement v are functions of time t as well as the x and y co-ordinates.
When the membrane is in the in-plane motion, the relations between strains and displacements

are expressed as

ex ¼
@u

@x
; ey ¼

@v

@y
; exy ¼

1

2

@u

@y
þ

@v

@x

� �
; ð1Þ

where the longitudinal displacement u and the lateral displacement v are displacements in x and y
directions, respectively. Since the thickness of the membrane is very small compared to other
dimensions, the stresses associated with the z direction can be assumed to be zero, i.e.,

sz ¼ sxz ¼ syz ¼ 0; ð2Þ

and the non-zero stresses are given by

sx ¼
E

1� n2
ðex þ neyÞ; sy ¼

E

1� n2
ðnex þ eyÞ; sxy ¼

E

1þ n
exy; ð3Þ

where E is the Young’s modulus and n is the Poisson ratio. The strain energy of the membrane can
then be obtained from

U ¼
1

2
h

Z
A

ðsxex þ syey þ 2sxyexyÞ dA; ð4Þ

where h is the thickness of the membrane and A is the area.
On the other hand, the position vector of a point on the deformed membrane can be written as

r ¼ ðx þ uÞiþ ðy þ vÞj; ð5Þ

where i and j are the unit vectors in the x and y directions, respectively. Then, the velocity vector
can be expressed as

v ¼ V þ
@u

@t
þ V

@u

@x

� �
iþ

@v

@t
þ V

@v

@x

� �
j: ð6Þ

The kinetic energy of the moving membrane, K ; is computed by

K ¼
1

2
rh

Z
A

v � v dA; ð7Þ

where r is the mass density of the membrane.
The equations of motion and the corresponding boundary conditions can be obtained by using

the extended Hamilton principle that is valid for an open system with mass transport. The
extended Hamilton principle may be expressed asZ t2

t1

ðdK � dU þ dWnc � dMÞ dt ¼ 0; ð8Þ

where dWnc is the virtual work done by non-conservative forces and dM is the virtual momentum
transport across system boundaries. These two terms are given by

dWnc ¼
Z b

0

Tðdujx¼L � dujx¼0Þ dy; dM ¼
Z
G
rhðv � drÞðV i � nÞ dG; ð9Þ
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where G is the boundary with mass transport and n is the outward normal vector at the boundary
G: By substituting Eqs. (4), (7) and (9) into Eq. (8), the equations of motion for the axially moving
membrane are obtained as follows

rh
@2u

@t2
þ 2V

@2u

@t@x
þ V2 @

2u

@x2

� �
�

@qx

@x
�

@qxy

@y
¼ 0; ð10Þ

rh
@2v

@t2
þ 2V

@2v

@t@x
þ V2 @

2v

@x2

� �
�

@qy

@y
�

@qxy

@x
¼ 0; ð11Þ

where

qx ¼
Eh

1� n2
@u

@x
þ n

@v

@y

� �
; qy ¼

Eh

1� n2
@v

@y
þ n

@u

@x

� �
; qxy ¼

Eh

2ð1þ nÞ
@u

@y
þ

@v

@x

� �
: ð12Þ

Note that Eqs. (10) and (11) are linear partial differential equations, which are coupled between
the longitudinal displacement u and the lateral displacement v: If the translating speed is zero, the
equations of motion reduce to

r
@2u

@t2
�

E

1� n2
@2u

@x2
þ n

@2v

@x@y

� �
�

E

2ð1þ nÞ
@2u

@y2
þ

@2v

@x@y

� �
¼ 0; ð13Þ

r
@2v

@t2
�

E

1� n2
@2v

@y2
þ n

@2u

@x@y

� �
�

E

2ð1þ nÞ
@2v

@x2
þ

@2u

@x@y

� �
¼ 0; ð14Þ

which can be verified by the corresponding equations in Ref. [2]. The associated boundary
conditions can be also obtained from Eq. (8). The boundary conditions at the edges of x ¼ 0 and
L are given by

qx ¼ T at x ¼ 0;L; ð15Þ

qxy dv ¼ 0 at x ¼ 0;L: ð16Þ

Note that Eqs. (15) and (16) are related to the boundary conditions in the longitudinal and
lateral directions, respectively. The relation in Eq. (15) means that the membrane is subject to a
constant tension T along the mass-transport boundaries at x ¼ 0 and L when the translating
speed is not varying. The boundary conditions of moving materials have been studied by many
researchers using various models for moving strings or sliding beams. For example, Chung et al.
[6] treated a moving string with translating acceleration, and obtained time responses of the in-
plane displacement. They also calculated the natural frequencies of the system when the string was
moving at constant speed. In that case, the boundary conditions at supports were the same as
those in Eq. (15). In fact, the realistic treatment of boundary conditions for moving material
systems is a very difficult subject, and still problematic. One of the main goals and contributions
of this study is to investigate the effects of the lateral dimension of moving membranes on the
natural frequencies. Therefore, a great deal of efforts have been focused on the boundary
conditions of Eq. (16), which are the lateral boundary conditions at x ¼ 0; L: Related to the
longitudinal boundary conditions at x ¼ 0; L; the boundary conditions presented by Chung et al.
[6] are simply adopted in this paper, as shown in Eq. (15). The boundary conditions in Eq. (16)
can be categorized into two cases. The boundary conditions of the first case (Case I) correspond to
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qxy ¼ 0 at x ¼ 0 and L: In this case, no friction and external force exist in the lateral direction. So
the membrane can freely move in the y direction. The other case (Case II) is when the lateral
displacement is zero, i.e., v ¼ 0 at x ¼ 0 and L: Case II may correspond to a case with maximum
friction, which prevents the slipping of the membrane in the y direction, between the rollers and
the membrane. Even though it seems that both the cases are not practical, they will be treated in
this study because the actual situation of transport devices may lie between the extremes, namely,
Cases I and II. On the other hand, the boundary conditions at the edges of y ¼ 0 and b are given
by

qy ¼ qxy ¼ 0 at y ¼ 0; b: ð17Þ

It can be noted from Eq. (17) that the boundaries are free at y ¼ 0 and b:

3. Discretization of the equations of motion

Since the exact solutions of the governing Eqs. (10) and (11) are not feasible, to obtain
approximate solutions in a finite-dimensional function space, the discretization is carried out
based on the Galerkin method. In this problem, it is very difficult to select the trial functions as
the comparison functions that satisfy both the geometric and natural boundary conditions. Thus,
the Galerkin method is necessarily applied to the weak form, which can be derived from the strong
forms given by the partial differential equations and the corresponding boundary conditions. The
weak form is obtained by multiplying Eqs. (10) and (11) by the weighting functions %u and %v;
respectively, summing the equations, and then integrating the resultant equation by parts over the
length L and width b as shown in the equation belowZ b

0

Z L

0

rh %u
@2u

@t2
þ 2V

@2u

@t@x
þ V2 @

2u

@x2

� �
þ

@ %u

@x
qx þ

@ %u

@y
qxy

� �
dx dy

þ
Z b

0

Z L

0

rh%v
@2v

@t2
þ

��
2V

@2v

@t@x
þ V2 @

2v

@x2

�
þ

@%v

@y
qy þ

@%v

@x
qxy

�
dx dy ¼

Z b

0

Tð %ujx¼L � %ujx¼0Þ dy: ð18Þ

Since the natural boundary conditions are already considered in the above procedure, the trial
functions need to satisfy only the geometric boundary conditions. In other words, the admissible
functions can be selected as the trial functions. The longitudinal and lateral displacements may be
approximated as

u ¼
XN

i¼0

XN

j¼0

Tu
ij ðtÞZ

u
ijðx; yÞ; v ¼

XN

i¼0

XN

j¼0

Tv
ijðtÞZ

v
ijðx; yÞ; ð19Þ

In Eq. (19), N is the total number of the basis functions, Tu
ij ðtÞ and Tv

ijðtÞ are unknown functions of
time to be determined, and Zu

ijðx; yÞ and Zv
ijðx; yÞ may be given by

Zu
ijðx; yÞ ¼ XiðxÞYjðyÞ; ð20Þ

Zv
ijðx; yÞ ¼

XiðxÞYjðyÞ for Case I;

sin
ði þ 1Þpx

L
YjðyÞ for Case II;

8<
: ð21Þ
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where Xi and Yj are the Legendre polynomials defined by

XiðxÞ ¼
XR1
r¼0

ð�1Þr
ð2i � 2rÞ!

2ir!ði � rÞ!ði � 2rÞ!
2x

L
� 1

� �i�2r

; i ¼ 0; 1;y;N; ð22Þ

YjðyÞ ¼
XR2
r¼0

ð�1Þr
ð2j � 2rÞ!

2jr!ðj � rÞ!ðj � 2rÞ!
2y

b
� 1

� �j�2r

; j ¼ 0; 1;y;N; ð23Þ

in which

R1 ¼
i=2 if i is even;

ði � 1Þ=2 if i is odd;

(
R2 ¼

j=2 if j is even;

ðj � 1Þ=2 if j is odd:

(
ð24Þ

For Case II, sinusoidal functions are taken instead of Xi to satisfy the geometric boundary
conditions given by v ¼ 0 at x ¼ 0 and L: Similarly, the weighting functions corresponding to the
trial functions u and v can be expressed as

%u ¼
XN

m¼0

XN

n¼0

%Tu
mnðtÞZ

u
mnðx; yÞ; %v ¼

XN

m¼0

XN

n¼0

%Tv
mnðtÞZ

v
mnðx; yÞ; ð25Þ

where %Tu
mn and %Tv

mn are arbitrary functions of time.
Substituting Eqs. (19) and (25) into Eq. (18) and then collecting all the terms in terms of %Tu

mn

and %Tv
mn; the arbitrariness of %Tu

mn and %Tv
mn provides the discretized equationsXN

i¼0

XN

j¼0

ðmu
mnij

.Tu
ij þ 2Vgu

mnij
’Tu

ij þ kuu
mnijT

u
ij þ kuv

mnijT
v
ij Þ ¼ fmn for m; n ¼ 0; 1;y;N; ð26Þ

XN

i¼0

XN

j¼0

ðmv
mnij

.Tv
ij þ 2Vgv

mnij
’Tv

ij þ kvv
mnijT

v
ij þ kvu

mnijT
u
ij Þ ¼ 0 for m; n ¼ 0; 1;y;N; ð27Þ

where the superposed dot indicates differentiation with respect to time t: In Eqs. (26) and (27), the
coefficients mu

mnij; gu
mnij; kuu

mnij and fmn are defined by

mu
mnij ¼ rhX 00

mi Y
00
nj ; gu

mnij ¼
1
2
rh½X 01

mi � X 10
mi þ 1� ð�1Þmþi	Y 00

nj ;

kuu
mnij ¼ ðD � rhV2ÞX 11

mi Y
00
nj þ D0X

00
mi Y

11
nj þ rhV2½X 0

i ðLÞ � ð�1ÞmX 0
i ð0Þ	Y

00
nj ;

fmn ¼ ½1� ð�1Þm	T
Z b

0

Yn dy; ð28Þ

where the prime denotes differentiation with respect to x; D and D0 are

D ¼
Eh

1� n2
; D0 ¼

Eh

2ð1þ nÞ
; ð29Þ

and X 00
mi ; X 01

mi ; X 10
mi ; X 11

mi ; Y 00
nj and Y 11

nj are given by

X 00
mi ¼

Z L

0

XmXi dx; X 01
mi ¼

Z L

0

Xm

dXi

dx
dx; X 10

mi ¼
Z L

0

dXm

dx
Xi dx; X 11

mi ¼
Z L

0

dXm

dx

dXi

dx
dx;
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Y 00
nj ¼

Z b

0

YnYj dy; Y 11
nj ¼

Z b

0

dYn

dy

dYj

dy
dy: ð30Þ

On the other hand, the coefficients mv
mnij; gv

mnij; kuv
mnij ; kvu

mnij and kvv
mnij are defined differently for

Cases I and II. For Case I, these coefficients are defined by

mv
mnij ¼ rhX 00

mi Y
00
nj ; gv

mnij ¼ 0:5rh½X 01
mi � X 10

mi þ 1� ð�1Þmþi	Y 00
nj ;

kuv
mnij ¼ nDX 10

mi Y
01
nj þ D0X

01
mi Y

10
nj ; kvu

mnij ¼ nDX 01
mi Y

10
nj þ D0X

10
mi Y

01
nj ;

kvv
mnij ¼ ðD0 � rhV2ÞX 11

mi Y
00
nj þ DX 00

mi Y
11
nj þ rhV2½X 0

i ðLÞ � ð�1ÞmX 0
i ð0Þ	Y

00
nj ; ð31Þ

while, for Case II, they are defined by

mv
mnij ¼ rhC00miY

00
nj ; gv

mnij ¼ 0:5rh½C01mi � C10mi	Y
00
nj ; kuv

mnij ¼ nD %C10miY
01
nj þ D0 %C

01
miY

10
nj ;

kvu
mnij ¼ nD %C10miY

10
nj þ D0 %C

01
miY

01
nj ; kvv

mnij ¼ ðD0 � rhV2ÞC11miY
00
nj þ DC00miY

11
nj : ð32Þ

In Eqs. (31) and (32), the coefficients Y 01
nj ; Y 10

nj ; C00mi; C01mi; C10mi; C11mi; %C01mi and %C10mi are given by

Y 01
nj ¼

Z b

0

Yn

dYj

dy
dy; Y 10

nj ¼
Z b

0

dYn

dy
Yj dy; C00mi ¼

Z L

0

sin
ðm þ 1Þpx

L
sin

ði þ 1Þpx

L
dx;

C01mi ¼
ði þ 1Þp

L

Z L

0

sin
ðm þ 1Þpx

L
cos

ði þ 1Þpx

L
dx; C10mi ¼

ðm þ 1Þp
L

Z L

0

cos
ðm þ 1Þpx

L
sin

ði þ 1Þpx

L
dx;

C11mi ¼
ðm þ 1Þði þ 1Þp2

L2

Z L

0

cos
ðm þ 1Þpx

L
cos

ði þ 1Þpx

L
dx; %C01mi ¼

ði þ 1Þp
L

Z L

0

Xm cos
ði þ 1Þpx

L
dx;

%C10mi ¼
Z L

0

dXm

dx
sin

ði þ 1Þpx

L
dx: ð33Þ

Eqs. (26) and (27) can be rewritten in the vector-matrix form

M .Sþ 2VG ’Sþ KS ¼ F; ð34Þ

where M is the mass matrix, G is the matrix related to the gyroscopic force, K is the stiffness
matrix, F is the applied load vector, and S is defined by

S ¼ fTu
00;T

u
10;y;Tu

ij ;y;Tu
NN ;T

v
00;T

v
10;y;Tv

ij ;y;Tv
NNg

T: ð35Þ

Eq. (34) represents the discretized equation of motion for a steady state of the membrane without
an applied force.

4. Dynamic analysis

In order to compute the natural frequencies and modal vectors of the moving membrane, it is
convenient to transform the homogeneous version of Eq. (34) into

A ’TðtÞ þ BTðtÞ ¼ 0; ð36Þ
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where

A ¼
M 0

0 I

" #
; B ¼

2VG K

�I 0

" #
; TðtÞ ¼

’S

S

( )
; ð37Þ

in which I is the identity matrix and TðtÞ is the state vector. To obtain the natural frequencies and
mode shapes, the solution of Eq. (36) can be assumed as

TðtÞ ¼ T0elnt; ð38Þ

where ln is the eigenvalue and T0 is the eigenvector. Substituting Eq. (38) into Eq. (36), the
natural frequencies and the modal vectors for the in-plane vibration of a membrane can be
obtained from

ðBþ lnAÞT0 ¼ 0: ð39Þ

Some numerical results will now be presented for two sets of boundary conditions, Cases I and
II. The dimensions of membranes are given as L ¼ 420mm and h ¼ 25mm, and the material
properties of a magnetic tape (r ¼ 1400 kg/m3, E ¼ 3:8GPa and n ¼ 0:3) obtained in Ref. [8] are
used in simulations. For convenience of comparison, the dimensionless natural frequency %o and
the dimensionless velocity %V are introduced as follows:

%o ¼ o=
E

rL2ð1� n2Þ

� �1=2
; %V ¼ V=

E

rð1� n2Þ

� �1=2
; ð40Þ

where o is the calculated natural frequency of a membrane.

4.1. Case I: free lateral boundaries at both ends

For the boundary conditions of Case I, i.e., for qxy ¼ 0 at x ¼ 0 and L; the natural frequencies
and corresponding mode shapes are obtained. First of all, the convergence of the natural
frequencies is evaluated to verify the discretized equations. Shown in Tables 1 and 2 are the lowest
six in-plane natural frequencies of stationary and moving membranes with the aspect ratio of
L=b ¼ 3; when the boundary conditions are for Case I. It is seen in Tables 1 and 2 that the natural
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Table 1

Convergence characteristics of the dimensionless natural frequencies for the stationary membrane with L=b ¼ 3 when
the boundary conditions are for Case I

N First Second Third Fourth Fifth Sixth

1 3.2863 6.4807 7.0569 10.4499 10.5925 N/A

2 1.8598 3.2863 6.4807 7.0518 8.1333 9.5583

3 1.7270 2.9840 3.9913 6.6191 6.9872 7.2858

4 1.5788 2.9840 3.6860 5.8524 5.8535 6.4163

5 1.5723 2.9831 3.2583 5.6172 5.8501 5.9413

6 1.5707 2.9831 3.2339 5.0307 5.8299 5.8867

7 1.5707 2.9831 3.2225 4.9862 5.7705 5.8298

8 1.5707 2.9831 3.2223 4.9498 5.7611 5.8297
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frequencies are converged as the number of basis functions N increases. Note that eight basis
functions are sufficient for the convergence.
It is now valuable to check whether or not the in-plane natural frequencies obtained from the

model of this study are consistent with results in the literature. However, it is impossible to find
the results for the in-plane vibration of moving membranes because all the previous studies
reported the natural frequencies for not moving but stationary membranes or plates to the
authors’ knowledge. Thus, in Table 3, the lowest six natural frequencies of stationary membranes
with the boundary conditions of Case I are compared with the results of Bardell et al. [1]. It is
shown that the natural frequencies agree well with each other.
The effects of the translating speed and aspect ratio on the natural frequencies will now be

investigated. First, as shown in Fig. 2, the lowest six dimensionless natural frequencies %o are
influenced by the dimensionless translating speed %V when the aspect ratio is L=b=3. The
corresponding mode shapes are depicted in Fig. 3 for case of %V ¼ 0:01: Note that, when a
membrane is moving, each modal co-ordinate has a different phase angle in general because
eigenvectors are complex due to the matrix G in Eq. (34). Therefore, the modal co-ordinates do
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Table 2

Convergence characteristics of the dimensionless natural frequencies for the moving membrane with %V ¼ 0:1 and
L=b ¼ 3 when the boundary conditions are for Case I

N First Second Third Fourth Fifth Sixth

1 3.2863 6.4807 7.0569 10.4499 10.5925 N/A

2 1.7395 3.2863 6.4807 7.0158 8.1230 9.5273

3 1.5786 2.9517 3.9889 6.6274 7.0197 7.2455

4 1.4144 2.9490 3.7166 5.7871 5.8125 6.4042

5 1.4014 2.9491 3.1872 5.5308 5.7602 5.9563

6 1.3990 2.9491 3.1250 4.9096 5.7356 5.9153

7 1.3990 2.9491 3.1101 4.8005 5.7350 5.8374

8 1.3990 2.9491 3.1083 4.7383 5.7348 5.8293

Table 3

Comparison of the dimensionless natural frequencies for the stationary membrane with boundary conditions of Case I

when L=b ¼ 1 or 2

L=b ¼ 1 L=b ¼ 2

Present (N ¼ 8) Ref. [1] Present (N ¼ 8) Ref. [1]

2.321 2.321 1.954 1.954

2.472 2.472 2.961 2.961

2.472 2.472 3.267 3.267

2.628 2.628 4.727 4.726

2.987 2.987 4.784 4.784

3.452 3.452 5.205 5.205

C. Shin et al. / Journal of Sound and Vibration 272 (2004) 137–154 145



not reach their maximum values at the same time, and consequently the mode shapes change with
time. However, since the imaginary values are much smaller than the real values of the
eigenvectors for the moving membranes of this study, the variation of mode shapes in time due to
phase angles is negligible. Thus, the mode shapes obtained from only the real parts of the
eigenvectors are plotted at a given time. It is shown in Fig. 3 that the modes of the moving
membrane consist of flexural and longitudinal modes. The second and sixth modes can be treated
as longitudinal modes, and the others may be considered as flexural modes. As shown in Fig. 2,
the natural frequencies are generally decreased as the translating speed increases. This trend can
also be found in the vibration of a string [6]. Furthermore, it is observed that the first natural
frequency becomes zero at a specific translating speed, %V ¼ 0:245: This speed is a critical speed in
a sense of the dynamic instability of the moving membrane. An interesting point to be mentioned
here is that the veering phenomena between the frequency loci are observed in Fig. 2. The veering
regions are magnified in Fig. 4. It is known that veering phenomena may occur due to the

ARTICLE IN PRESS

0.00 0.05 0.10 0.15 0.20 0.25
0

2

4

6

ω

V

Fig. 2. Dimensionless natural frequencies %o versus the dimensionless translating speed %V for the membrane of Case I

when L=b ¼ 3:
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Fig. 3. Mode shapes of the membrane (Case I) when L=b ¼ 3 and %V ¼ 0:01: (a) the first mode; (b) the second mode;
(c) the third mode; (d) the fourth mode; (e) the fifth mode; and (f) the sixth mode.
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coupling between different modes [9]. The veering phenomenon shown in Fig. 4(a) occurs between
the fifth (flexural mode) and sixth modes (longitudinal mode), while the phenomenon shown in
Fig. 4(b) occurs between the second (longitudinal mode) and third modes (flexural mode).
Next, consider the effects of the aspect ratio on the natural frequencies. The lowest

dimensionless natural frequencies of the moving membranes with the aspect ratios of L=b ¼
2; 3 and 4 are shown in Fig. 5. It is seen that the magnitudes of the natural frequencies and critical
speed decrease as the aspect ratio L=b increases. Fig. 6 shows the lowest four dimensionless
natural frequencies as functions of the aspect ratio, where the solid and dotted lines denote
%V ¼ 0:1 and 0, respectively. For a stationary membrane, i.e., %V ¼ 0; a similar plot and some useful
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Fig. 4. Veering phenomena of the frequency loci (Case I): (a) the fifth and sixth modes; (b) the second and third modes.
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Fig. 5. Comparison of the lowest dimensionless natural frequencies of the moving membrane for Case I when the

aspect ratios are L=b ¼ 2 ( � � � ), 3 (—) and 4 (- � - � - � ).
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comments can be found in Ref. [2]. It is seen that the trends of the frequency loci of the moving
membranes (solid lines) are very similar to those of the stationary membranes (dotted lines).
However, the frequencies of the moving membranes happen to be lower than those of the
stationary ones.

4.2. Case II: fixed lateral boundaries at both ends

For the boundary conditions of Case II, the natural frequencies and corresponding mode
shapes are also obtained. First, convergence tests are performed as shown in Tables 4 and 5 for
%V ¼ 0 and 0.1, respectively, when the aspect ratio L=b ¼ 3: It is noticed that the natural
frequencies of the stationary or moving membrane with the boundary conditions of Case II
converge with N: Based on the results, N ¼ 8 is chosen in further computations.
The next step is to find comparable results in the literature for the purpose of verification.

However, it is impossible to find the corresponding results because of two reasons. The first reason
is that, as mentioned before, all the previous studies treated only stationary membranes or plates.
The other reason is related to boundary conditions. In most of the literature, the boundary
conditions for both u and v are simultaneously fixed–fixed, i.e., u ¼ v ¼ 0 or free–free, i.e., ua0
and va0 along each side of a rectangular membrane. In Case II of this study, the boundary
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Fig. 6. Dimensionless natural frequencies %o versus the aspect ratio L=b for Case I when %V ¼ 0:1 (—) or %V ¼ 0 ( � � � ).

Table 4

Convergence characteristics of the dimensionless natural frequencies for the stationary membrane with boundary

conditions of Case II when L=b ¼ 3

N First Second Third Fourth Fifth Sixth

1 0.9092 3.3254 3.7172 6.1482 7.2407 10.6017

2 0.8670 2.8683 3.3074 5.5199 6.1482 7.2157

3 0.7811 2.7322 2.9840 4.8690 5.5773 6.4655

4 0.7810 2.4057 2.9840 4.8141 5.5773 5.8507

5 0.7808 2.4056 2.9831 4.2523 5.5758 5.8507

6 0.7808 2.3998 2.9831 4.2522 5.5758 5.8300

7 0.7808 2.3997 2.9831 4.2229 5.5758 5.8300

8 0.7808 2.3997 2.9831 4.2197 5.5758 5.8299
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conditions for u and v at y ¼ 0 and b are free–free. However, the boundary conditions at x ¼ 0
and L can be represented by ua0 (because of mass transport) and v ¼ 0 (because of maximum
friction). This kind of mixed boundary conditions has not been treated in the pervious studies.
Therefore, the finite element commercial code, ANSYS, is used in this study to verify the natural
frequencies of a stationary membrane. Table 6 shows the lowest six dimensionless natural
frequencies obtained from the developed model and ANSYS for the stationary membrane of
L=b ¼ 3: It is seen that both results are in good agreement.
The effects of the dimensionless translating speed %V on the dimensionless natural frequencies %o

are analyzed for L=b ¼ 3 as shown in Fig. 7, and the corresponding mode shapes when %V ¼ 0:01
are presented in Fig. 8. The lowest six modes in Fig. 8 consist of the flexural, longitudinal and
shear modes. The first, second and fourth modes are the flexural modes, and the third and sixth
modes may be considered as longitudinal modes. The fifth mode looks like the shear mode in the
longitudinal direction. It seems that the shear mode has no deformation in the lateral direction. In
Fig. 7, the natural frequencies of the flexural modes decrease as the translating speed increases.
The natural frequencies of the longitudinal modes are also decreased as %V increases, but the
decreasing rates are much lower than those of the flexural modes. Note that this trend is similar to
that of Case I. However, it is observed that the shear mode does not depend on the translating
speed. This cannot be clearly explained in this study, so a further investigation may be required
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Table 5

Convergence characteristics of the dimensionless natural frequencies for the moving membrane with boundaries of Case

II when L=b ¼ 3 and %V ¼ 0:1

N First Second Third Fourth Fifth Sixth

1 0.8472 3.3252 3.7017 6.1482 7.2417 10.4723

2 0.7963 2.7938 3.3068 5.5413 6.1482 7.2159

3 0.6980 2.6562 2.9526 4.7400 5.5773 6.4273

4 0.6939 2.3227 2.9494 4.7054 5.5773 5.8043

5 0.6938 2.2992 2.9493 4.1629 5.5758 5.7715

6 0.6938 2.2893 2.9493 4.1127 5.5758 5.7431

7 0.6937 2.2886 2.9493 4.0689 5.5758 5.7422

8 0.6937 2.2882 2.9493 4.0619 5.5758 5.7419

Table 6

Comparison of the dimensionless natural frequencies for the stationary membrane with boundaries of Case II when

L=b ¼ 3

%o Present (N ¼ 8) ANSYS Difference (%)

1 0.7808 0.7814 0.08

2 2.3997 2.4046 0.20

3 2.9831 2.9837 0.02

4 4.2197 4.2377 0.42

5 5.5758 5.5847 0.16

6 5.8299 5.8348 0.08
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for why the natural frequency of the shear mode is independent of the translating speed. Recall
that the shear mode is not found in Case I. On the other hand, the veering phenomena between
the frequency loci are observed in Fig. 7, and the veering region is enlarged as shown in Fig. 9. In
the region, it is seen that the corresponding modes are exchanged mutually.
Next, the effects of the aspect ratio on the lowest dimensionless natural frequency and the

lowest critical speed are evaluated. As shown in Fig. 10, the natural frequencies diminish as not
only the translating speed %V but also the aspect ratio L=b increases. This trend is similar to that of
Case I described in Fig. 5. A point to be noted from Figs. 5 and 10 is that the natural frequencies
of Case II are much lower than those of Case I. This difference in magnitude is mainly due to
boundary conditions. However, it seems that the critical speeds of Cases I and II are not much
different. To investigate this relation between the critical speeds and boundary conditions, one
more plot is generated as shown in Fig. 11. The vertical and horizontal axes denote the
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Fig. 8. Mode shapes of the membrane (Case II) when L=b ¼ 3 and %V ¼ 0:01: (a) the first mode; (b) the second mode;
(c) the third mode; (d) the fourth mode; (e) the fifth mode; and (f) the sixth mode.
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Fig. 7. Dimensionless natural frequencies %o versus the dimensionless translating speed %V for the membrane of Case II

when L=b ¼ 3:
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dimensionless critical speed %Vcr and aspect ratio L=b; respectively. It is seen that the critical speeds
of both Cases I and II are almost the same for various aspect ratios. It is also seen that the critical
speeds for both boundary conditions decrease as the aspect ratio increases. Thus, it can be stated
that it is not the boundary conditions but the aspect ratio, which is a dominant player in
determining the critical speed of moving membranes.
Fig. 12 shows the lowest four dimensionless natural frequencies as functions of the aspect ratio,

where the solid and dotted lines denote %V=0.1 and 0, respectively. These frequencies represent the
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Fig. 10. Comparison of the lowest dimensionless natural frequency of the moving membrane for Case II when the

aspect ratios are L=b ¼ 2 ( � � � ), 3 (—) and 4 (- � - � - � ).
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Fig. 11. Dimensionless critical speed %Vcr versus aspect ratio L=b for Case I (o) and Case II (x).
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Fig. 9. Veering phenomena of the frequency loci (Case II).

C. Shin et al. / Journal of Sound and Vibration 272 (2004) 137–154 151



flexural and longitudinal modes. For example, the third lowest frequency at L=b ¼3 is related to
the longitudinal mode, and the others are frequencies of the flexural modes. It is seen that the
frequencies of the moving membranes are lower than those of the stationary, but the trend of
frequency loci is very similar to each other. It is also seen that, when the aspect ratio is higher than
about 3, all the flexural frequencies decrease gradually with L=b: However, the longitudinal
frequency grows slightly as the aspect ratio increases.
It can be noted from Figs. 6 and 12 that the longitudinal natural frequencies of Case II are

almost the same as those of Case I for various aspect ratios. However, it is also observed in
general that the flexural natural frequencies of Case II are much lower than those of Case I. Thus,
the boundary conditions need to be properly considered in the in-plane vibration analysis of
moving membranes because they have significant effects on the natural frequencies. It is, however,
problematic to exactly define the boundary conditions of membranes on transport systems, and
needs more investigations. For the lateral constraints between a membrane and rollers, it is
recommended in further studies to adopt a friction model that may lie between Cases I and II of
this study.
Finally, a result for the membranes of different materials is briefly presented. The dimensionless

translating speed versus the lowest dimensionless natural frequencies of the membranes (Case I
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Fig. 12. Dimensionless natural frequencies %o versus the aspect ratio L=b of the membrane of Case II when %V ¼ 0:1 (—)
or %V ¼ 0 ( � � � ).
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Fig. 13. The lowest dimensionless natural frequencies %o versus the dimensionless translating speed %V for

the membranes (Case I, L=b ¼ 3) of three different materials: magnetic tape ( � � � ), aluminium (—) and soft rubber
(- � - � - � ).
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and L=b ¼ 3) made of three different materials: magnetic tape, aluminium (r ¼ 2700 kg/m3,
E ¼ 71GPa and n ¼ 0:33) and soft rubber (r ¼ 950 kg/m3, E ¼ 5MPa and n ¼ 0:5) is shown in
Fig. 13. It is found that even though the values of the dimensionless critical speed are slightly
different, the trend is almost the same, and comments addressed for the membrane made of
magnetic tape material are still applicable to those of different materials.

5. Summary and concluding remarks

The in-plane model of an axially moving membrane is developed, considering the effects of
aspect ratio and translating speed. The equations of in-plane motion are derived by the extended
Hamilton principle. At the boundaries with mass transport, two sets of boundary conditions (i.e.,
free and fixed constraints in the lateral direction) are considered. From the equations of motion
and the associated boundary conditions, the weak form is obtained. The weak form is then
discretized by using the Galerkin method. Based upon the discretized equations, the natural
frequencies and mode shapes are computed. Especially, the effect of translating speed and aspect
ratio on the in-plane vibration are investigated.
The results of this study can be summarized as follows.

(1) The natural frequencies of the flexural and longitudinal modes decrease as the translating
speed increases.

(2) The natural frequency of the shear mode is independent of translating speed.
(3) The veering phenomena between frequency loci exist among the in-plane modes.
(4) The natural frequencies of the flexural modes decrease as the aspect ratio of moving
membranes increases.

(5) The critical speed of the lowest frequency decreases as the aspect ratio increases.
(6) The critical speeds are almost the same for the two sets of boundary conditions.
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